Year 5 \& 6 Maths Parent Workshop

Led by Elena Yiapanis Deputy Headteacher and Maths Subject Lead

Aims of the today's session:

Enfield

- Look at our calculation policy with a focus on the four operations (addition, subtraction, multiplication and division)
- Discuss how mathematics is taught through a CPA approach (Concrete-Pictorial- Abstract)
- Look at the the concrete resources that we use at school to support mathematical teaching and learning
- Discuss the importance of oracy in maths and mathematical language
- An insight into the 'teaching for mastery' approach to mathematics
- How to support children in adopting a growth mindset in maths so they can achieve their potential.
- How to support your children at home with their maths learning

CPA Approach: Concrete Pictorial Abstract

- Concrete: 'doing' the maths- introducing real objects that can be manipulated to bring the problem to life. Eg: money, counters.
- Pictorial: 'seeing the maths'- making connections between the concrete and the pictorial representations and the pictorial and the abstact. Eg: part whole models, bar models, ten frames.
- Abstract: the ultimate goal is for children to understand abstract mathematical concepts, signs and notation. When a child demonstrates with concrete models and pictorial representations that they have grasped a concept, we can be confident that they are ready to explore the abstract.

The CPA Approach

Enfield Heights ACADEMY

Maths should be practical for all ages and the CPA approach used at any time and with any age to support understanding

$$
2+1=3
$$

Addition in Year 5 \& 6

Enfield
Heights
ACADEMY

Calculation policy

Addition with up to 6 six
digit numbers.

Column formal addition for adding decimals with tenths and hundredths.

Column addition of money.

Year 5 - Addition

Addition using place value counters

Enfield Heights ACADEMY

$10,000 / 120,000$	2,000 (2,00	$100 \cdot 100$
	1,000 1.000	100:100
	1,000 (1,000	100
10,000		100 (100
	1,000 (1,000	$100{ }^{100}$
	20.00	$\begin{array}{llll} \text { th } & \text { H T TO } \\ 2 & 6 & 5 & 2 \\ 1 & 5 & 4 \\ 1 & 5 & 6 \\ \hline \end{array}$

Addition using bar modelling

Enfield

$$
530,542-346,221=184,321
$$

	Hth TTh		Th	H	T		0	
	3	4	6	2	2		1	
$+$	1	8	4	3	2		1	
	5	3	0	5			2	
	1	1						

Part + part $=$ whole \quad Whole - part $=$ part

Calculation Policy

Year 6 - Addition

Enfield
Heights
ACADEMY

Subtraction in Year 5 \& 6

Enfield
Heights
ACADEMY

Calculation policy

Enfield Heights ACADEMY

Year 5 Subtraction

Formal column subtraction
with up to 6 digit numbers.

Formal column subtraction
With decimals with up to 2
decimal places.

Supporting understanding using manipulatives

Enfield Heights
ACADEMY

Enfield Heights ACADEMY

Enfield Heights

Enfield Heights ACADEMY

Enfield
Heights
ACADEMY

Calculation policy

Formal column
Subtraction with up to
7 digit numbers.

Year 6-Subtraction

Enfield
 Heights
 ACADEMY

Calculation policy

Year 5 - Multiplication

Grid method for up to 3 by 2 digit multiplication

Area model for 2 by 2 digit multiplication

Moving onto formal column method

Place value counters for grid method

Enfield

234×32

- ${ }^{-1}$	0000000
$0{ }^{98}$	$\begin{aligned} & 9090009 \\ & 0000000 \end{aligned}$
-	- ${ }^{-1}$
(1) $)^{\circ}$	-000000

Area model

Enfield Heights
ACADEMY

Formal column multiplication

Enfield
Heights

Calculation policy

Enfield Heights ACADEMY

Grid method for up to 4 by 2 digit multiplication

Moving onto formal column method and multiplication of decimals

Year 6 - Multiplication

Enfield
Heights

Division in Year 5 \& 6

Calculation policy

Year 5 - Division

Concrete	Pictorial	Abstract
- Continued use of Numicon and Cuisenaire tracks to illustrate rernainders bigger than 0 as whole numbers and fractions - Place Value Counters for 4 digit $\div 1$ digit $\mathrm{eg} .8532 \div 2$ (focus on language of grouping and exchange)	- Number lines - Use of Area Method of Division $\begin{array}{r} \quad \frac{78}{30}(10 \times 3) \\ -\frac{30}{17}(10 \times 3) \\ - \\ \frac{15}{18}(6 \times 3) \\ 26^{10} \end{array}$ Represent Place Value Counters (focus on language of grouping and exchange) Bar modelling for multiples $7,335 \div 15=489$ $\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline 15 & 30 & 45 & 60 & 75 & 90 & 706 & 500 & 156 & 150 \\ \hline \end{array}$	- Formal Short Division Consolidation of Year 4 and then moving to: 4 digit $\div 1$ (exchanging twice and a remainder of 0) $2 \longdiv { 8 5 5 ^ { 3 } 3 6 ^ { \prime } }$ 4 digit $\div 1$ (exchanging three times and a remainder of 0) $4 \longdiv { 0 9 4 4 + 0 }$ Remainders greater than 0 shown as whole numbers and fractions $5 \longdiv { 3 8 } ^ { \frac { 0 7 } { 3 8 } }$ Oracy Sentence Stems: \qquad is divided into groups of Thate are groups and a remainder uf \qquad \qquad \qquad The remainder is always less than the divisor. How many groups of 2 thousand are there in 8 thousand? There are 4 groups of 2 thousand in 8 thousand. How many groups of 2 hundred are there in 5 hundred? There are 2 groups of 2 hundred in 5 hundred. I will exchange the remaining 1 hundred for 10 tens, I now have 13 tens. How many groups of 2 tens are there in 13 ters? There are 6 groups of 2 tens in 13 tens. I will exchange the remaining ten for 10 ones.) know have 12 ones. How many groups of 2 ones are there in 12 ones? There are 6 groups of 2 teos in 12 tens. There is a reminder of Q.

Enfield
 Heights
 ACADEMY

Use number lines and place value counters to focus on language of grouping and exchange

Formal short division method.

Children interpret remainders as fractions and decimals.

Division using place value counters

Representing remainders as fractions and decimals

$$
\begin{aligned}
& 98 \div 4 \\
& 24 r^{2}=24 \frac{1}{2} \\
& 49^{9^{\prime} 8}=24.5
\end{aligned}
$$

Calculation policy

Enfield Heights ACADEMY

Formal long division.

	Concrete	Pictorial	Abstract
	Place Value counters used to consolidate the language of grouping and exchange for short and long division	- As above	* Consolidation of Short Division (See Year 4 and 5) - Formal Long Division 4 digit $=1$ digit (remainder of 0)
	Oracy Sentence Sterns: \qquad is divided into groups of \qquad There are \qquad croups and a remainder of艮 \qquad The remainder is always less than the divisor: How many groups of 4 thousand are there in 8 thousand? There are 2 groups of 2 thousand in 8 thousand. I have no thousands remaining. How many groups of 4 hundred are there in 4 hundred? There is 1 group of 4 hundred in 4 hundred. I have no hundreds remaining. How many groups of 4 tens are there in 4 tens? There is 1 group of 4 tens in 4 tens. I have no tens remaining. How many groups of 4 ones are there in 8 ones? There are 2 groups of 4 ones in 8 tens. I have no nnes remaining-		4 digit $\div 1$ digit (Use of Os) Remainders as fractions and decimals $\begin{aligned} & 10 \div 4 \frac{10}{4} \cdot 2 \frac{22}{4} \cdot 2 \frac{1}{2} \\ & 4 \sqrt{\frac{02 \cdot 5}{10 \cdot 50}} \end{aligned}$
			4 digit $\div 2$ digit (Divisors greater than 12) (17)

Long division

Enfield
Heights
ACADEMY

Manipulatives- concrete resources

Dienes
Multiplication grids
Place value counters
100 squares
Number lines
Coins

Enfield
Heights
ACADEMY

The Teaching for Mastery Approach

Enfield Heights

What does it mean to master something?

- I know how to do it
- It becomes automatic and I don't need to think about it
- I'm really good at it- painting a picture
- I can show someone else how to do it

Teaching for Mastery: The 5 Big Ideas

Making generalisations

- If you change the position of the numbers in a multiplication calculation, the answer will always stay the same.
E.g. $4 \times 5=20$ and $5 \times 4=20$ (commutativity)
- All even numbers end in 0, 2, 4, 6, 8
- When counting in 10 s, the ones digit always stays the same but tens digit changes

Representation and

 Structure

 Structure}

- Representations are used in lessons to expose the mathematical structure being taught.
- In essence representation refers to the wide variety of ways to capture an abstract concept or relationship.

Multiple representations of the

Enfield
Heights
ACADEMY same number.

Number		Number word		
Forty Seven				
Draw it		Expanded form		
Tens	Ones	$40+7=47$		
$\\|\\|$	\cdots.	$7+40=47$		

Mathematical

 Thinking- If taught ideas are to be understood deeply, they must not merely be passively received but must be worked on by the pupil: thought about, reasoned with and discussed with others.
- We provide lots of opportunities for peer and collaborative discussions in our daily maths lessons.
- Problem solving and reasoning opportunities in every session to embed a depth of learning

Reasoning: Spotting mistakes and Enfield misconceptions

Alex thinks the chart shows 456-4
Do you agree?

Hundeds	Tens	Ones	
0	\varnothing	\varnothing	0
0	0	\varnothing	0
0	0	0	
	0	0	0

Rosie completes this subtraction incorrectly.

Explain the mistake to Rosie and correct it for her.

Reasoning: True or false?

True or False?

$49,999-19,999=50,000-20,000$

Can you explain why Dora's method work?

Can you think of another example where this method could be used?

Reasoning: Always, sometimes or never true?

Always, sometimes, never

- When multiplying a two-digit number by a one-digit number, the product has 3 digits.
- When multiplying a two-digit number by 8 the product is odd.
- When multiplying a two-digit number by 7 you need to exchange.

Prove it.
Enfield Heights

Fluency

Enfield

- Quick and efficient recall of facts and procedures and the flexibility to move between different contexts and representations of mathematics.
- Playing cards in class for times table practice
- Hit the button- Topmarks for quick fire number fact practice
- TT Rockstars- all KS2 classes set up- an exciting online resource for times table practice.
- Weekly times tables quizzes
- Number fact fluency work

Using known number facts: if we know

 this, what else do we know?$$
\begin{aligned}
& 60 \times 30=1800 \\
& 600 \times 300=180,000 \\
& 60 \times 3=180 \\
& 6 \times 3+1=19 \\
& 18=3 \times 6 \\
& 18 \div 3=6 \\
& 6=18 \div 3 \\
& 0.5 \times 12=6
\end{aligned}
$$

Conceptual variation
 Enfield Heights ACADEMY

- This is about all about how the teacher represents the concept being taught
- An opportunity to work on different representations of the same mathematical idea.
- These multiple representations will 'showcase' to pupils the different conceptual ideas that underpin a mathematical idea.

Variation helps visualisation

Enfield Heights
ACADEMY

Everyone Can!

At Enfield Heights we encourage children to develop a growth mindset by using these strategies:

- It's ok to get it wrong- mistakes are valuable opportunities to re think and understand more deeply. Spotting and sharing mistakes between teachers and pupils makes learning richer.
- Praising hard work- is a great motivator by focusing on effort rather than success. Children will be more willing to try harder and take risks.
- Mind your language- the language we (teachers and parents/carers) use around learners has a profound effect on their mindsets. Make a habit of using growth phrases like 'everyone can', 'mistakes can help you learn', 'just try for a little longer' and the key of them all- 'yet'. 'I just cannot solve this yet!'

Maths Talk

- Key Vocabulary: Discussing essential vocabulary
- Full sentences: Teachers and children need to use full sentences to explain or respond. When children use complete sentences, it both reveals their understanding and embeds their knowledge.
- Stem sentences: These help children express mathematical concepts accurately and scaffolds their responses.

Eg:' 4 is a part, 5 is a part, 9 is the whole.'

- Consistency: all use same mathematical terms in full, i.e ones instead of units

Ways to encourage maths talk at home

- Why is that a good mistake?
- If we know this, what else do we know?
- Give me . . .tell me . . show me ...
- Why is this the odd one out?
- The answer is . . .what is the question?
- Give me a silly answer for ...?
- Always, sometimes, never true?

Enfield Heights ACADEMY

```
W?
```


Any questions?

