Year 3 \& 4 Maths Parent Workshop

Led by Elena Yiapanis Deputy Headteacher and Maths Subject Lead

Aims of the today's session:

- Look at our calculation policy with a focus on the four operations (addition, subtraction, multiplication and division)
- Discuss how mathematics is taught through a CPA approach (Concrete Pictorial - Abstract)
- Look at the the concrete resources that we use at school to support mathematical teaching and learning
- Discuss the importance of oracy in maths and mathematical language
- An insight into the 'teaching for mastery' approach to mathematics
- How to support children in adopting a growth mindset in maths so they can achieve their potential.
- How to support your children at home with their maths learning

CPA Approach: Concrete Pictorial Abstract

- Concrete: 'doing' the maths - introducing real objects that can be manipulated to bring the problem to life. Eg: money, counters.
- Pictorial : 'seeing the maths' - making connections between the concrete and the pictorial representations and the pictorial and the abstact. Eg: part whole models, bar models, ten frames.
- Abstract: the ultimate goal is for children to understand abstract mathematical concepts, signs and notation. When a child demonstrates with concrete models and pictorial representations that they have grasped a concept, we can be confident that they are ready to explore the abstract.

The CPA Approach

Maths should be practical for all ages and the CPA approach used at any time and with any age to support understanding

$$
2+1=3
$$

Addition in Year 3 \& 4

Enfield
Heights
ACADEMY

Calculation policy

Year 3 - Addition

Addition of 3 digit numbers
Alongside the manipulatives (for understanding) you will notice we add one column at a time.

First the ones say it then record it.
Then the tens say it then record it.
Then the hundreds say it then record it.

Only towards the end of year 3 do we move towards the compact method-secure in their understanding.

What the children will be

Enfield Heights ACADEMY

The first bridge between what they know (from Keystage 1) and what they see in the form of the columnar calculation.

Can the children read the number 36? And represent it?

Can the children partition the number into tens and ones?

The same calculation
represented with place value counters.

$30+6$
 $20+2$

Enfield Heights ACADEMY

Begin with the partitioned/expanded method

Enfield Heights
ACADEMY

Move onto the formal column method and progress to regrouping

Representing what actually happens in the maths.

Are the children secure in their place value knowledge? How many ones, tens and hundreds are there?

Calculation policy

Year 4 -Addition

Enfield Heights ACADEMY

- Use of place value courters for columnar addition

- Use of place value counters for Bar Models (continuous)

- Bar Modelling (Part Past Whole and Comparison)

[^0]Abstract

- Continue with Formal Collumnar Addition

Exchange tens to humdreds			
Tit	H	T	0
+1	3	7	1
2	0	4	2
3	4	1	3

Exchange ones to tens and tens to hundreds
TH H T O
$+$

$$
\begin{aligned}
& \text { Different Number of Digits } \\
& +\begin{array}{cccc}
T H & H & T & 0 \\
4 & 3 & 1 & 6 \\
1 & 8 & 2 & 2 \\
1 & 4 & 1 & 1 \\
\hline 6 & 5 & 4 & 9 \\
\hline
\end{array}
\end{aligned}
$$

Addition using bar models

If 5,945 is a part and 1,052
Whole is a part, \qquad is the whole

Subtraction in Year 3 \& 4

Enfield
Heights
ACADEMY

Calculation policy

Expanded method using partitioning.

Move onto exchange in year 3.
We do not use the word borrow, as it's not accurate and not a method we use anymore, as it doesn't support understanding.

We sayexchange!

Move onto formal column method.

Year 3 - Subtraction

No exchange

Enfield Heights
ACADEMY

$$
438-325=113
$$

Hundreds	Tens	Ones
	賏	
1	1	3

H	T	O
4	3	8
-3	2	5
1	1	3

Move onto formal column method

Enfield
Heights
ACADEMY

Moving onto subtraction
with 4 digit numbers.

Compact/formal written
Method.

Estimate and use the
inverse to check answers

No exchange

Enfield

$$
4,562-3,152=1,410
$$

Th	H	T	O
$\varnothing \varnothing$	\odot	\varnothing	$\varnothing \varnothing$
$\varnothing \varnothing$	\varnothing	$\varnothing \varnothing$	
	\varnothing	$\varnothing \varnothing$	
1	4	1	0

4	5	6
-3	2	5
1410		

Enfield
Heights
ACADEMY

Th	H		0
$\begin{aligned} & \theta \theta \\ & 88 \\ & 80 \\ & 80 \end{aligned}$	χ°	$\begin{array}{\|l\|} \hline 0 \\ \hline 00 \\ 00 \\ 00 \\ 88 \\ 88 \end{array}$	
2	0	8	

Multiplication in Year 3 \& 4

Enfield

 HeightsACADEMY

Calculation Policy

Year 3 - Multiplication

Enfield Heights ACADEMY

Year 3 children should know their 2, 5, 10 and 3, 4, and 8 times tables.

Use grouping to represent understanding .

Introduced to the area and grid method.

Move onto expanded and formal column method.

Enfield

Visual representation of Arrays the commutative law

$$
3 \times 5=15
$$

$$
5 \times 3=15
$$

Expanded method year 3

Grid method year

Enfield

3

First partition the two digit number e.g. 22 is partitioned into 2 tens and 2 ones

Then multiply each by the multiplier in this case is 3

Finally add the totals.
Always start in my ones column (like I will when I get to the formal method).

If I know that 3 lots of 2 is 6 , then I
know that $30 \times 2=60$

Calculation policy

Enfield Heights

Year 4 children needs to know all of their multiplication tables up to 12 $\times 12$.

Continue with grid and area models

Continue with expanded method and move onto short multiplication.

Year 4 - Multiplication

The goal - 6 seconds!

- Statutory Year 4 Times Tables Check
- Free website:

https://mathsframe.co.uk/en/resources/resource/477/ Multiplication

TablesCheck

- Children can see which ones were wrong
- Many creative ways to teach times tables to children: using a counting stick, chanting, repetition, pattern spotting, games, quizzes and more

Enfield

Grid method
Year 4

Enfield

Expanded method
Year 4

Regrouping -

Enfield Heights ACADEMY Short multiplication

Enfield Heights ACADEMY

Enfield Heights ACADEMY

Enfield Heights ACADEMY

Division in Year 3 \& 4

Enfield
Heights
ACADEMY

Calculation policy

Year 3 - Division

Concrete	Pictorial	Abstract
- Link ufivision to multiplication through use of arrays and Cuisenaire tracks and the number sententes that can be created from them. $88,15 \times 3=15 \quad 5 \times 3=15 \quad 15+3=5 \quad 15+5=3$ LE - Sharing using Base 10 and moving to place value counters No exchange et, $33+3=11$ Exchange $10-42 \div 3=14$ - Moving to grouping 33-3 9000900 How mayy $9+5$ of 3 anes are thasia 35 ? - Concrete bar modelling (continuous)	- Counting back on number lines - Representing sharing pictorially - Representing grouping pittorially $33 \div 3$ $\left.0 \begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$ Tlure are. 11 grapi of 3 otes is 33. The is a muanur of O. Drawn bar models 33	- Formal short division 2 gligit 1 digit no exchanging and a remainder of 0 2 digit +1 digit with exchange and a remainder of 0 $3 \longdiv { 1 4 2 }$ Oracy Sentence Stems: \qquad divided by \qquad is equal to \qquad When we thilde, the whole is lonown and the number or parts or the value of the parts is also known_ \qquad \times \qquad Es the same as \qquad groups of \qquad When we rfivide \qquad by there 4 s temain det of 0 which means it an divide equally.

Division facts for the 3, 4 an 8 times tables.

Dividing 2 digits by a 1 digit number.

Introduce short division.

No remainders, only carrying!

Calculation policy

Year 4- Division

Enfield Heights ACADEMY

Division facts for all tables up t0 12×12.

Progress to short division with remainders.

Manipulatives - concrete resources

Dienes

Multiplication grids
Place value counters
100 squares
Number lines
Coins

Enfield Heights ACADEMY

The Teaching for Mastery Approach

What does it mean to master something?

- I know how to do it
- It becomes automatic and I don't need to think about it
- I'm really good at it- painting a picture
- I can show someone else how to do it

Teaching for Mastery: The 5 Big Ideas

Making generalisations

- If you change the position of the numbers in a multiplication calculation, the answer will always stay the same.
E.g. $4 \times 5=20$ and $5 \times 4=20$ (commutativity)
- All even numbers end in $0,2,4,6,8$
- When counting in 10s, the ones digit always stays the same but tens digit changes

Representation and

Structure

- Representations are used in lessons to expose the mathematical structure being taught.
- In essence representation refers to the wide variety of ways to capture an abstract concept or relationship.

Multiple representations of the

Enfield
Heights
ACADEMY

same number.

Number		Number word		
Forty Seven				
Draw it		Expanded form		
Tens	Ones	$40+7=47$		
$\\|\\|$	\cdots.	$7+40=47$		

Mathematical

Enfield Heights

- If taught ideas are to be understood deeply, they must not merely be passively received but must be worked on by the pupil: thought about, reasoned with and discussed with others.
- We provide lots of opportunities for peer and collaborative discussions in our daily maths lessons.
- Problem solving and reasoning opportunities in every session to embed a depth of learning

Reasoning: Spotting mistakes and misconceptions

Alex thinks the chart shows 456-4
Do you agree?

Hunderes	Tens	Ones	
0	\varnothing	\varnothing	0
0	0	\varnothing	0
0	0	0	0
	0	0	0

Rosie completes this subtraction incorrectly.

Explain the mistake to Rosie and correct it for her.

Reasoning: True or false?

True or False?

$49,999-19,999=50,000-20,000$

Can you explain why Dora's method work?

Can you think of another example where this method could be used?

Reasoning: Always, sometimes or never true?

Enfield Heights ACADEMY

Always, sometimes, never

- When multiplying a two-digit number by a one-digit number, the product has 3 digits.
- When multiplying a two-digit number by 8 the product is odd.
- When multiplying a two-digit number by 7 you need to exchange.

Prove it.

Enfield Heights

- Quick and efficient recall of facts and procedures and the flexibility to move between different contexts and representations of mathematics.
- Playing cards in class for times table practice
- Hit the button - Topmarks for quick fire number fact practice
- TT Rockstars- all KS2 classes set up- an exciting online resource for times table practice.
- Weekly times tables quizzes
- Number fact fluency work
Using known number facts: if we knowthis, what else do we know?
$60 \times 30=1800$

$$
600 \times 300=180,000
$$

$$
60 \times 3=180
$$

$$
6 \times 3+1=19
$$

$$
18=3 \times 6
$$

$$
18 \div 3=6
$$

$$
6=18 \div 3
$$

$$
0.5 \times 12=6
$$

Conceptual variation

Enfield Heights

- This is about all about how the teacher represents the concept being taught
- An opportunity to work on different representations of the same mathematical idea.
- These multiple representations will 'showcase' to pupils the different conceptual ideas that underpin a mathematical idea.

Variation helps visualisation

At Enfield Heights we encourage children to develop a using these strategies:

- It's ok to get it wrong- mistakes are valuable opportunities to re think and understand more deeply. Spotting and sharing mistakes between teachers and pupils makes learning richer.
- Praising hard work- is a great motivator by focusing on effort rather than success. Children will be more willing to try harder and take risks.
- Mind your language- the language we (teachers and parents/ carers) use around learners has a profound effect on their mindsets. Make a habit of using growth phrases like 'everyone can', 'mistakes can help you learn', 'just try for a little longer' and the key of them all- 'yet'. 'I just cannot solve this yet!'

Maths Talk

- Key Vocabulary: Discussing essential vocabulary
- Full sentences : Teachers and children need to use full sentences to explain or respond. When children use complete sentences, it both reveals their understanding and embeds their knowledge.
- Stem sentences: These help children express mathematical concepts accurately and scaffolds their responses.

Eg:'4 is a part, 5 is a part, 9 is the whole.'

- Consistency: all use same mathematical terms in full, i.e ones instead of units

Ways to encourage maths talk at home

Enfield Heights ACADEMY

- Why is that a good mistake?
- If we know this, what else do we know?
- Give me . . .tell me . . .show me . . .
- Why is this the odd one out?
- The answer is . . .what is the question?
- Give me a silly answer for . . .?
- Always, sometimes, never true?

When you add two even numbers it makes an odd number.

Any questions?

[^0]: Oracy Sentence Stems:
 The calcutatan tells. mel need to add the numbers
 It the column tatial is equal to hen andaree we mase
 exctiange.
 I will exchange ane hiendred tar len lens. _udd __ is equal to

