KS1 Maths Parent Workshop

Led by Elena Yiapanis Deputy Headteacher and Maths Subject Lead

Aims of the today's session:

- Look at our calculation policy with a focus on the four operations (addition, subtraction, multiplication and division)
- Discuss how mathematics is taught through a CPA approach (Concrete Pictorial - Abstract)
- Look at the concrete resources that we use at school to support mathematical teaching and learning
- Discuss the importance of oracy in maths and mathematical language
- An insight into the 'teaching for mastery' approach to mathematics
- How to support children in adopting a growth mindset in maths so they can achieve their potential.
- How to support your children at home with their maths learning

CPA Approach: Concrete Pictorial Abstract

- Concrete: 'doing' the maths - introducing real objects that can be manipulated to bring the problem to life. Eg: money, counters.
- Pictorial : 'seeing the maths' - making connections between the concrete and the pictorial representations and the pictorial and the abstact. Eg: part whole models, bar models, ten frames.
- Abstract: the ultimate goal is for children to understand abstract mathematical concepts, signs and notation. When a child demonstrates with concrete models and pictorial representations that they have grasped a concept, we can be confident that they are ready to explore the abstract.

The CPA Approach

Maths should be practical for all ages and the CPA approach used at any time and with any age to support understanding

$$
2+1=3
$$

Addition in KS1

Enfield
Heights
ACADEMY

Calculation Policy

Year 1 - Addition

Enfield Heights

ACADEMY

- To count objects, children will use real objects.
- Numbers are be represented through numicon.
- Children will use number lines to count on.

Year 2 - Addition

Enfield

 Heights ACADEMY- Number bonds to 20
- Related number facts to 100
- Adding using concrete resources
- Commutative nature of addition (done in any order)
- Counting on using a number line

Pictorial representations using base 10

Enfield Heights
ACADEMY

$36+22$

Can the children read the number 36 and represent it?

Can the children partition the number into tens and ones?

The same calculation representation using place value counters

Enfield Heights ACADEMY

$36+22$

Can the children read the number
36 and represent it?

Can the children partition the number
into tens and ones?

Number line addition counting on

$$
\left\{\begin{array}{l}
\begin{array}{l}
52+14 \\
+10+4
\end{array} \\
\underbrace{6268}_{5268}
\end{array}\right.
$$

Subtraction in KS1

Enfield Heights ACADEMY

Year 1 - Subtraction

国

Enfield

 Heights
1:1 correspondence

Linking objects to the value of their number

Finding the difference within 20

Number bonds to 20
Counting back on a 100 square or number line

- Partitioning the second number
- Count back the ones.
- Count back the tens.
- Find the difference by counting up.
- Recognise the inverse
relationship between + and

Year 2-Subtraction

Subtraction with concrete resources

Enfield
Heights
ACADEMY

Using Ten Frames

 For Subtraction

No exchange

Enfield Heights ACADEMY

In subtraction we only represent the first number.

At the end of my calculation I will have less than I started.

Always take away the ones first!

Counting back using partitioning

Enfield
Heights
ACADEMY

SUBTRACTING TWO-DIGIT NUMBERS ON NUMBER LINES

Finding the difference using a number line - counting up

Multiplication in KS1

Enfield Heights ACADEMY

Enfield Heights

Year 1 - Multiplication

Very important that this maths
knowledge builds through concrete meaningful contexts using concrete objects.

Repeated addition.
Knowing the multiplication facts for
the 2,5 and 10 times tables.
Using the X symbol
Recognise that multiplication is commutative (can be done in any order)

Year 2-Multiplication

Understanding multiplication

Enfield Heights

Counting in groups of...

Spotting patterns

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	80
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	300

Doubling (afdaDEMY halving!)

Repeated addition

$0 \quad 2+2+2=\square 3 \times 2=\square$
89

Enfield
Heights ACADEMY

$3 \times 5=15$
$5 \times 3=15$

Division in KS1

Enfield
Heights
ACADEMY

Enfield Heights ACADEMY

Year 1-Division
Division as sharing through practical activities.

Halving even numbers up to 10
Not introduced to the \div symbol unti year 2

Year 2-Division

Recalling division facts for 2,5 and 10 times tables

Division as sharing and grouping.
Understanding $\div 2$ as 'half of'
Recognise relationship between X and

Manipulatives - concrete resources

Numicon
Dienes
Place value counters
100 square
Number lines
Coins

Enfield

The Teaching for Mastery Approach

What does it mean to master something?

- I know how to do it
- It becomes automatic and I don't need to think about it
- I'm really good at it- painting a picture
- I can show someone else how to do it

Teaching for Mastery: The 5 Big Ideas

Making generalisations

- If you change the position of the numbers in a multiplication calculation, the answer will always stay the same.
E.g. $4 \times 5=20$ and $5 \times 4=20$ (commutativity)
- All even numbers end in 0, 2, 4, 6, 8
- When counting in 10s, the ones digit always stays the same but tens digit changes

Representation and

Structure

- Representations are used in lessons to expose the mathematical structure being taught.
- In essence representation refers to the wide variety of ways to capture an abstract concept or relationship.

Multiple representations of the

Enfield
Heights
ACADEMY same number.

Number47		Number word Forty seven		
Draw it		Expanded form		
Tens	Ones			
\|			\cdots	$\begin{aligned} & 40+7=47 \\ & 7+40=47 \end{aligned}$

Part part whole models

Enfield
Heights
ACADEMY

If 6 is the whole.

What are the parts?
WALT use a part-whole model to partition 6

Hold on... look there are? ways for the number 6. My Idea works again!

Mathematical
 Thinking

- If taught ideas are to be understood deeply, they must not merely be passively received but must be worked on by the pupil: thought about, reasoned with and discussed with others.
- We provide lots of opportunities for peer and collaborative discussions in our daily maths lessons.
- Problem solving and reasoning opportunities in every session to embed a depth of learning

Reasoning: What's the same and what's different?

Enfield

> What is the same?
> What is different?

$$
\begin{aligned}
& 7+3=10 \\
& 17+3=20 \\
& 20=7+13
\end{aligned}
$$

Explain your thinking.

Reasoning: Spotting mistakes and misconcentions

Dexter uses ten frames to calculate eight plus six.

He says,

$$
8+6=16
$$

Do you agree?
Explain why.

Reasoning: True or false

True or false?

12 is an odd number.

Prove your answer using concrete, pictorial and abstract representations.
Explain each approach.

Fluency

- Quick and efficient recall of facts and procedures and the flexibility to move between different contexts and representations of mathematics.
- Hit the button - Topmarks for quick fire number fact practice
- TT Rockstars- year 2
- Number bond work - noticing the patterns, for example:

$$
7+3=10 \text { so } 70+30=100
$$

Conceptual variation

- Variation is all about how the teacher represents the concept being taught
- Provides opportunities to work on different representations of the same mathematical idea.
- For example, looking and multiple representations of the number 54 with dienes, place value counters, arrow cards, 100 square etc.

Everyone Can!

At Enfield Heights we encourage children to develop a using these strategies:
growth mindset by

- It's ok to get it wrong- mistakes are valuable opportunities to re think and understand more deeply. Spotting and sharing mistakes between teachers and pupils makes learning richer.
- Praising hard work- is a great motivator by focusing on effort rather than success. Children will be more willing to try harder and take risks.
- Mind your language- the language we (teachers and parents/ carers) use around learners has a profound effect on their mindsets. Make a habit of using growth phrases like 'everyone can', 'mistakes can help you learn', 'just try for a little longer' and the key of them all- 'yet'. 'I just cannot solve this yet!'

Maths Talk

- Key Vocabulary: Discussing essential vocabulary
- Full sentences: Teachers and children need to use full sentences to explain or respond. When children use complete sentences, it both reveals their understanding and embeds their knowledge.
- Stem sentences: These help children express mathematical concepts accurately and scaffolds their responses.
Eg:'4 is a part, 5 is a part, 9 is the whole.'
- Consistency: all use same mathematical terms in full, i.e ones instead of units

Enfield

Ways to encourage maths talk at home

- Why is that a good mistake?
- If we know this, what else do we know?
- Give me . . .tell me . . show me . . .
- Why is this the odd one out?
- The answer is . . .what is the question?
- Give me a silly answer for . . .?
- Always, sometimes, never true?

When you add two even numbers it makes an odd number.

Any questions?

